久久久久久久视色,久久电影免费精品,中文亚洲欧美乱码在线观看,在线免费播放AV片

<center id="vfaef"><input id="vfaef"><table id="vfaef"></table></input></center>

    <p id="vfaef"><kbd id="vfaef"></kbd></p>

    
    
    <pre id="vfaef"><u id="vfaef"></u></pre>

      <thead id="vfaef"><input id="vfaef"></input></thead>

    1. 站長資訊網(wǎng)
      最全最豐富的資訊網(wǎng)站

      迅速掌握Python中的Hook鉤子函數(shù)

      Python教程欄目介紹Python中的Hook鉤子函數(shù)

      迅速掌握Python中的Hook鉤子函數(shù)

      大量免費學(xué)習(xí)推薦,敬請訪問python教程(視頻)

      1. 什么是Hook

      經(jīng)常會聽到鉤子函數(shù)(hook function)這個概念,最近在看目標(biāo)檢測開源框架mmdetection,里面也出現(xiàn)大量Hook的編程方式,那到底什么是hook?hook的作用是什么?

      • what is hook ?鉤子hook,顧名思義,可以理解是一個掛鉤,作用是有需要的時候掛一個東西上去。具體的解釋是:鉤子函數(shù)是把我們自己實現(xiàn)的hook函數(shù)在某一時刻掛接到目標(biāo)掛載點上。

      • hook函數(shù)的作用 舉個例子,hook的概念在windows桌面軟件開發(fā)很常見,特別是各種事件觸發(fā)的機制; 比如C++的MFC程序中,要監(jiān)聽鼠標(biāo)左鍵按下的時間,MFC提供了一個onLeftKeyDown的鉤子函數(shù)。很顯然,MFC框架并沒有為我們實現(xiàn)onLeftKeyDown具體的操作,只是為我們提供一個鉤子,當(dāng)我們需要處理的時候,只要去重寫這個函數(shù),把我們需要操作掛載在這個鉤子里,如果我們不掛載,MFC事件觸發(fā)機制中執(zhí)行的就是空的操作。

      從上面可知

      • hook函數(shù)是程序中預(yù)定義好的函數(shù),這個函數(shù)處于原有程序流程當(dāng)中(暴露一個鉤子出來)

      • 我們需要再在有流程中鉤子定義的函數(shù)塊中實現(xiàn)某個具體的細(xì)節(jié),需要把我們的實現(xiàn),掛接或者注冊(register)到鉤子里,使得hook函數(shù)對目標(biāo)可用

      • hook 是一種編程機制,和具體的語言沒有直接的關(guān)系

      • 如果從設(shè)計模式上看,hook模式是模板方法的擴展

      • 鉤子只有注冊的時候,才會使用,所以原有程序的流程中,沒有注冊或掛載時,執(zhí)行的是空(即沒有執(zhí)行任何操作)

      本文用python來解釋hook的實現(xiàn)方式,并展示在開源項目中hook的應(yīng)用案例。hook函數(shù)和我們常聽到另外一個名稱:回調(diào)函數(shù)(callback function)功能是類似的,可以按照同種模式來理解。

      迅速掌握Python中的Hook鉤子函數(shù)

      2. hook實現(xiàn)例子

      據(jù)我所知,hook函數(shù)最常使用在某種流程處理當(dāng)中。這個流程往往有很多步驟。hook函數(shù)常常掛載在這些步驟中,為增加額外的一些操作,提供靈活性。

      下面舉一個簡單的例子,這個例子的目的是實現(xiàn)一個通用往隊列中插入內(nèi)容的功能。流程步驟有2個

      • 需要再插入隊列前,對數(shù)據(jù)進(jìn)行篩選 input_filter_fn

      • 插入隊列 insert_queue

      class ContentStash(object):     """     content stash for online operation     pipeline is     1. input_filter: filter some contents, no use to user     2. insert_queue(redis or other broker): insert useful content to queue     """      def __init__(self):         self.input_filter_fn = None         self.broker = []      def register_input_filter_hook(self, input_filter_fn):         """         register input filter function, parameter is content dict         Args:             input_filter_fn: input filter function          Returns:          """         self.input_filter_fn = input_filter_fn      def insert_queue(self, content):         """         insert content to queue         Args:             content: dict          Returns:          """         self.broker.append(content)      def input_pipeline(self, content, use=False):         """         pipeline of input for content stash         Args:             use: is use, defaul False             content: dict          Returns:          """         if not use:             return          # input filter         if self.input_filter_fn:             _filter = self.input_filter_fn(content)                      # insert to queue         if not _filter:             self.insert_queue(content)    # test ## 實現(xiàn)一個你所需要的鉤子實現(xiàn):比如如果content 包含time就過濾掉,否則插入隊列 def input_filter_hook(content):     """     test input filter hook     Args:         content: dict      Returns: None or content      """     if content.get('time') is None:         return     else:         return content   # 原有程序 content = {'filename': 'test.jpg', 'b64_file': "#test", 'data': {"result": "cat", "probility": 0.9}} content_stash = ContentStash('audit', work_dir='')  # 掛上鉤子函數(shù), 可以有各種不同鉤子函數(shù)的實現(xiàn),但是要主要函數(shù)輸入輸出必須保持原有程序中一致,比如這里是content content_stash.register_input_filter_hook(input_filter_hook)  # 執(zhí)行流程 content_stash.input_pipeline(content)

      3. hook在開源框架中的應(yīng)用

      3.1 keras

      在深度學(xué)習(xí)訓(xùn)練流程中,hook函數(shù)體現(xiàn)的淋漓盡致。

      一個訓(xùn)練過程(不包括數(shù)據(jù)準(zhǔn)備),會輪詢多次訓(xùn)練集,每次稱為一個epoch,每個epoch又分為多個batch來訓(xùn)練。流程先后拆解成:

      • 開始訓(xùn)練

      • 訓(xùn)練一個epoch前

      • 訓(xùn)練一個batch前

      • 訓(xùn)練一個batch后

      • 訓(xùn)練一個epoch后

      • 評估驗證集

      • 結(jié)束訓(xùn)練

      這些步驟是穿插在訓(xùn)練一個batch數(shù)據(jù)的過程中,這些可以理解成是鉤子函數(shù),我們可能需要在這些鉤子函數(shù)中實現(xiàn)一些定制化的東西,比如在訓(xùn)練一個epoch后我們要保存下訓(xùn)練的模型,在結(jié)束訓(xùn)練時用最好的模型執(zhí)行下測試集的效果等等。

      keras中是通過各種回調(diào)函數(shù)來實現(xiàn)鉤子hook功能的。這里放一個callback的父類,定制時只要繼承這個父類,實現(xiàn)你過關(guān)注的鉤子就可以了。

      @keras_export('keras.callbacks.Callback') class Callback(object):   """Abstract base class used to build new callbacks.    Attributes:       params: Dict. Training parameters           (eg. verbosity, batch size, number of epochs...).       model: Instance of `keras.models.Model`.           Reference of the model being trained.    The `logs` dictionary that callback methods   take as argument will contain keys for quantities relevant to   the current batch or epoch (see method-specific docstrings).   """    def __init__(self):     self.validation_data = None  # pylint: disable=g-missing-from-attributes     self.model = None     # Whether this Callback should only run on the chief worker in a     # Multi-Worker setting.     # TODO(omalleyt): Make this attr public once solution is stable.     self._chief_worker_only = None     self._supports_tf_logs = False    def set_params(self, params):     self.params = params    def set_model(self, model):     self.model = model    @doc_controls.for_subclass_implementers   @generic_utils.default   def on_batch_begin(self, batch, logs=None):     """A backwards compatibility alias for `on_train_batch_begin`."""    @doc_controls.for_subclass_implementers   @generic_utils.default   def on_batch_end(self, batch, logs=None):     """A backwards compatibility alias for `on_train_batch_end`."""    @doc_controls.for_subclass_implementers   def on_epoch_begin(self, epoch, logs=None):     """Called at the start of an epoch.      Subclasses should override for any actions to run. This function should only     be called during TRAIN mode.      Arguments:         epoch: Integer, index of epoch.         logs: Dict. Currently no data is passed to this argument for this method           but that may change in the future.     """    @doc_controls.for_subclass_implementers   def on_epoch_end(self, epoch, logs=None):     """Called at the end of an epoch.      Subclasses should override for any actions to run. This function should only     be called during TRAIN mode.      Arguments:         epoch: Integer, index of epoch.         logs: Dict, metric results for this training epoch, and for the           validation epoch if validation is performed. Validation result keys           are prefixed with `val_`.     """    @doc_controls.for_subclass_implementers   @generic_utils.default   def on_train_batch_begin(self, batch, logs=None):     """Called at the beginning of a training batch in `fit` methods.      Subclasses should override for any actions to run.      Arguments:         batch: Integer, index of batch within the current epoch.         logs: Dict, contains the return value of `model.train_step`. Typically,           the values of the `Model`'s metrics are returned.  Example:           `{'loss': 0.2, 'accuracy': 0.7}`.     """     # For backwards compatibility.     self.on_batch_begin(batch, logs=logs)    @doc_controls.for_subclass_implementers   @generic_utils.default   def on_train_batch_end(self, batch, logs=None):     """Called at the end of a training batch in `fit` methods.      Subclasses should override for any actions to run.      Arguments:         batch: Integer, index of batch within the current epoch.         logs: Dict. Aggregated metric results up until this batch.     """     # For backwards compatibility.     self.on_batch_end(batch, logs=logs)    @doc_controls.for_subclass_implementers   @generic_utils.default   def on_test_batch_begin(self, batch, logs=None):     """Called at the beginning of a batch in `evaluate` methods.      Also called at the beginning of a validation batch in the `fit`     methods, if validation data is provided.      Subclasses should override for any actions to run.      Arguments:         batch: Integer, index of batch within the current epoch.         logs: Dict, contains the return value of `model.test_step`. Typically,           the values of the `Model`'s metrics are returned.  Example:           `{'loss': 0.2, 'accuracy': 0.7}`.     """    @doc_controls.for_subclass_implementers   @generic_utils.default   def on_test_batch_end(self, batch, logs=None):     """Called at the end of a batch in `evaluate` methods.      Also called at the end of a validation batch in the `fit`     methods, if validation data is provided.      Subclasses should override for any actions to run.      Arguments:         batch: Integer, index of batch within the current epoch.         logs: Dict. Aggregated metric results up until this batch.     """    @doc_controls.for_subclass_implementers   @generic_utils.default   def on_predict_batch_begin(self, batch, logs=None):     """Called at the beginning of a batch in `predict` methods.      Subclasses should override for any actions to run.      Arguments:         batch: Integer, index of batch within the current epoch.         logs: Dict, contains the return value of `model.predict_step`,           it typically returns a dict with a key 'outputs' containing           the model's outputs.     """    @doc_controls.for_subclass_implementers   @generic_utils.default   def on_predict_batch_end(self, batch, logs=None):     """Called at the end of a batch in `predict` methods.      Subclasses should override for any actions to run.      Arguments:         batch: Integer, index of batch within the current epoch.         logs: Dict. Aggregated metric results up until this batch.     """    @doc_controls.for_subclass_implementers   def on_train_begin(self, logs=None):     """Called at the beginning of training.      Subclasses should override for any actions to run.      Arguments:         logs: Dict. Currently no data is passed to this argument for this method           but that may change in the future.     """    @doc_controls.for_subclass_implementers   def on_train_end(self, logs=None):     """Called at the end of training.      Subclasses should override for any actions to run.      Arguments:         logs: Dict. Currently the output of the last call to `on_epoch_end()`           is passed to this argument for this method but that may change in           the future.     """    @doc_controls.for_subclass_implementers   def on_test_begin(self, logs=None):     """Called at the beginning of evaluation or validation.      Subclasses should override for any actions to run.      Arguments:         logs: Dict. Currently no data is passed to this argument for this method           but that may change in the future.     """    @doc_controls.for_subclass_implementers   def on_test_end(self, logs=None):     """Called at the end of evaluation or validation.      Subclasses should override for any actions to run.      Arguments:         logs: Dict. Currently the output of the last call to           `on_test_batch_end()` is passed to this argument for this method           but that may change in the future.     """    @doc_controls.for_subclass_implementers   def on_predict_begin(self, logs=None):     """Called at the beginning of prediction.      Subclasses should override for any actions to run.      Arguments:         logs: Dict. Currently no data is passed to this argument for this method           but that may change in the future.     """    @doc_controls.for_subclass_implementers   def on_predict_end(self, logs=None):     """Called at the end of prediction.      Subclasses should override for any actions to run.      Arguments:         logs: Dict. Currently no data is passed to this argument for this method           but that may change in the future.     """    def _implements_train_batch_hooks(self):     """Determines if this Callback should be called for each train batch."""     return (not generic_utils.is_default(self.on_batch_begin) or             not generic_utils.is_default(self.on_batch_end) or             not generic_utils.is_default(self.on_train_batch_begin) or             not generic_utils.is_default(self.on_train_batch_end))

      這些鉤子的原始程序是在模型訓(xùn)練流程中的

      keras源碼位置: tensorflowpythonkerasenginetraining.py

      部分摘錄如下(## I am hook):

      # Container that configures and calls `tf.keras.Callback`s.       if not isinstance(callbacks, callbacks_module.CallbackList):         callbacks = callbacks_module.CallbackList(             callbacks,             add_history=True,             add_progbar=verbose != 0,             model=self,             verbose=verbose,             epochs=epochs,             steps=data_handler.inferred_steps)        ## I am hook       callbacks.on_train_begin()       training_logs = None       # Handle fault-tolerance for multi-worker.       # TODO(omalleyt): Fix the ordering issues that mean this has to       # happen after `callbacks.on_train_begin`.       data_handler._initial_epoch = (  # pylint: disable=protected-access           self._maybe_load_initial_epoch_from_ckpt(initial_epoch))       for epoch, iterator in data_handler.enumerate_epochs():         self.reset_metrics()         callbacks.on_epoch_begin(epoch)         with data_handler.catch_stop_iteration():           for step in data_handler.steps():             with trace.Trace(                 'TraceContext',                 graph_type='train',                 epoch_num=epoch,                 step_num=step,                 batch_size=batch_size):               ## I am hook               callbacks.on_train_batch_begin(step)               tmp_logs = train_function(iterator)               if data_handler.should_sync:                 context.async_wait()               logs = tmp_logs  # No error, now safe to assign to logs.               end_step = step + data_handler.step_increment               callbacks.on_train_batch_end(end_step, logs)         epoch_logs = copy.copy(logs)          # Run validation.          ## I am hook         callbacks.on_epoch_end(epoch, epoch_logs)

      3.2 mmdetection

      mmdetection是一個目標(biāo)檢測的開源框架,集成了許多不同的目標(biāo)檢測深度學(xué)習(xí)算法(pytorch版),如faster-rcnn, fpn, retianet等。里面也大量使用了hook,暴露給應(yīng)用實現(xiàn)流程中具體部分。

      詳見https://github.com/open-mmlab/mmdetection

      這里看一個訓(xùn)練的調(diào)用例子(摘錄)(https://github.com/open-mmlab/mmdetection/blob/5d592154cca589c5113e8aadc8798bbc73630d98/mmdet/apis/train.py

      def train_detector(model,                    dataset,                    cfg,                    distributed=False,                    validate=False,                    timestamp=None,                    meta=None):     logger = get_root_logger(cfg.log_level)      # prepare data loaders      # put model on gpus      # build runner     optimizer = build_optimizer(model, cfg.optimizer)     runner = EpochBasedRunner(         model,         optimizer=optimizer,         work_dir=cfg.work_dir,         logger=logger,         meta=meta)     # an ugly workaround to make .log and .log.json filenames the same     runner.timestamp = timestamp      # fp16 setting     # register hooks     runner.register_training_hooks(cfg.lr_config, optimizer_config,                                    cfg.checkpoint_config, cfg.log_config,                                    cfg.get('momentum_config', None))     if distributed:         runner.register_hook(DistSamplerSeedHook())      # register eval hooks     if validate:         # Support batch_size > 1 in validation         eval_cfg = cfg.get('evaluation', {})         eval_hook = DistEvalHook if distributed else EvalHook         runner.register_hook(eval_hook(val_dataloader, **eval_cfg))      # user-defined hooks     if cfg.get('custom_hooks', None):         custom_hooks = cfg.custom_hooks         assert isinstance(custom_hooks, list),              f'custom_hooks expect list type, but got {type(custom_hooks)}'         for hook_cfg in cfg.custom_hooks:             assert isinstance(hook_cfg, dict),                  'Each item in custom_hooks expects dict type, but got '                  f'{type(hook_cfg)}'             hook_cfg = hook_cfg.copy()             priority = hook_cfg.pop('priority', 'NORMAL')             hook = build_from_cfg(hook_cfg, HOOKS)             runner.register_hook(hook, priority=priority)

      4. 總結(jié)

      本文介紹了hook的概念和應(yīng)用,并給出了python的實現(xiàn)細(xì)則。希望對比有幫助??偨Y(jié)如下:

      • hook函數(shù)是流程中預(yù)定義好的一個步驟,沒有實現(xiàn)

      • 掛載或者注冊時, 流程執(zhí)行就會執(zhí)行這個鉤子函數(shù)

      • 回調(diào)函數(shù)和hook函數(shù)功能上是一致的

      • hook設(shè)計方式帶來靈活性,如果流程中有一個步驟,你想讓調(diào)用方來實現(xiàn),你可以用hook函數(shù)

      相關(guān)免費學(xué)習(xí)推薦:php編程(視頻)

      贊(0)
      分享到: 更多 (0)
      網(wǎng)站地圖   滬ICP備18035694號-2    滬公網(wǎng)安備31011702889846號