MySql 行級鎖 表級鎖
如何保證數據并發(fā)訪問的一致性、有效性是所有數據庫必須解決的一個問題,鎖沖突也是影響數據庫并發(fā)訪問性能的一個重要因素。從這個角度來說,鎖對數據庫而言顯得尤其重要,也更加復雜。
MySQL鎖概述
相對其他數據庫而言,MySQL的鎖機制比較簡單,其最顯著的特點是不同的存儲引擎支持不同的鎖機制。
比如
MyISAM和MEMORY存儲引擎采用的是表級鎖(table-level locking)。
InnoDB存儲引擎既支持行級鎖(row-level locking),也支持表級鎖,但默認情況下是采用行級鎖。
MySQL這3種鎖的特性可大致歸納如下
表級鎖:開銷小,加鎖快;不會出現(xiàn)死鎖;鎖定粒度大,發(fā)生鎖沖突的概率最高,并發(fā)度最低。
行級鎖:開銷大,加鎖慢;會出現(xiàn)死鎖;鎖定粒度最小,發(fā)生鎖沖突的概率最低,并發(fā)度也最高。
頁面鎖:開銷和加鎖時間界于表鎖和行鎖之間;會出現(xiàn)死鎖;鎖定粒度界于表鎖和行鎖之間,并發(fā)度一般。
僅從鎖的角度來說:表級鎖更適合于以查詢?yōu)橹?,只有少量按索引條件更新數據的應用,如Web應用;而行級鎖則更適合于有大量按索引條件并發(fā)更新少量不同數據,同時又有并發(fā)查詢的應用,如一些在線事務處理(OLTP)系統(tǒng)。下面幾節(jié)我們重點介紹MySQL表鎖和 InnoDB行鎖的問題。
MyISAM表鎖
MyISAM存儲引擎只支持表鎖,這也是MySQL開始幾個版本中唯一支持的鎖類型。隨著應用對事務完整性和并發(fā)性要求的不斷提高,MySQL才開始開發(fā)基于事務的存儲引擎,后來慢慢出現(xiàn)了支持頁鎖的BDB存儲引擎和支持行鎖的InnoDB存儲引擎(實際 InnoDB是單獨的一個公司,現(xiàn)在已經被Oracle公司收購)。但是MyISAM的表鎖依然是使用最為廣泛的鎖類型。本節(jié)將詳細介紹MyISAM表鎖的使用。
查詢表級鎖爭用情況
可以通過檢查table_locks_waited和table_locks_immediate狀態(tài)變量來分析系統(tǒng)上的表鎖定爭奪:
mysql> show status like 'table%';
| Variable_name | Value |
| Table_locks_immediate | 2979 |
| Table_locks_waited | 0 |
2 rows in set (0.00 sec))
如果Table_locks_waited的值比較高,則說明存在著較嚴重的表級鎖爭用情況。
MySQL表級鎖的鎖模式
MySQL的表級鎖有兩種模式:表共享讀鎖(Table Read Lock)和表獨占寫鎖(Table Write Lock)。
MyISAM表的讀操作,不會阻塞其他用戶對同一表的讀請求,但會阻塞對同一表的寫請求;
MyISAM表的寫操作,則會阻塞其他用戶對同一表的讀和寫操作;
MyISAM表的讀操作與寫操作之間,以及寫操作之間是串行的;
當一個線程獲得對一個表的寫鎖后,只有持有鎖的線程可以對表進行更新操作。其他線程的讀、寫操作都會等待,直到鎖被釋放為止。
獲得表film_text的WRITE鎖定
mysql> lock table film_text write;
Query OK, 0 rows affected (0.00 sec)
當前session對鎖定表的查詢、更新、插入操作都可以執(zhí)行:
mysql> select film_id,title from film_text where film_id = 1001;
| film_id | title |
| 1001 | Update Test |
1 row in set (0.00 sec)
mysql> insert into film_text (film_id,title) values(1003,'Test');
Query OK, 1 row affected (0.00 sec)
mysql> update film_text set title = 'Test' where film_id = 1001;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0
其他session對鎖定表的查詢被阻塞,需要等待鎖被釋放:
mysql> select film_id,title from film_text where film_id = 1001;
等待
釋放鎖:
mysql> unlock tables;
Query OK, 0 rows affected (0.00 sec)
等待
Session2獲得鎖,查詢返回:
mysql> select film_id,title from film_text where film_id = 1001;
| film_id | title |
| 1001 | Test |
1 row in set (57.59 sec)
如何加表鎖?
MyISAM在執(zhí)行查詢語句(SELECT)前,會自動給涉及的所有表加讀鎖,在執(zhí)行更新操作(UPDATE、DELETE、INSERT等)前,會自動給涉及的表加寫鎖,這個過程并不需要用戶干預,因此,用戶一般不需要直接用LOCK TABLE命令給MyISAM表顯式加鎖。在示例中,顯式加鎖基本上都是為了方便而已,并非必須如此。
給MyISAM表顯示加鎖,一般是為了在一定程度模擬事務操作,實現(xiàn)對某一時間點多個表的一致性讀取。例如,有一個訂單表orders,其中記錄有各訂單的總金額total,同時還有一個訂單明細表order_detail,其中記錄有各訂單每一產品的金額小計 subtotal,假設我們需要檢查這兩個表的金額合計是否相符,可能就需要執(zhí)行如下兩條SQL:
Select sum(total) from orders;
Select sum(subtotal) from order_detail;
這時,如果不先給兩個表加鎖,就可能產生錯誤的結果,因為第一條語句執(zhí)行過程中,order_detail表可能已經發(fā)生了改變。因此,正確的方法應該是:
Lock tables orders read local, order_detail read local;
Select sum(total) from orders;
Select sum(subtotal) from order_detail;
Unlock tables;
要特別說明以下兩點內容。
上面的例子在LOCK TABLES時加了“l(fā)ocal”選項,其作用就是在滿足MyISAM表并發(fā)插入條件的情況下,允許其他用戶在表尾并發(fā)插入記錄,有關MyISAM表的并發(fā)插入問題,后面還會進一步介紹。
在用LOCK TABLES給表顯式加表鎖時,必須同時取得所有涉及到表的鎖,并且MySQL不支持鎖升級。也就是說,在執(zhí)行LOCK TABLES后,只能訪問顯式加鎖的這些表,不能訪問未加鎖的表;同時,如果加的是讀鎖,那么只能執(zhí)行查詢操作,而不能執(zhí)行更新操作。其實,在自動加鎖的情況下也基本如此,MyISAM總是一次獲得SQL語句所需要的全部鎖。這也正是MyISAM表不會出現(xiàn)死鎖(Deadlock Free)的原因。
一個session使用LOCK TABLE命令給表film_text加了讀鎖,這個session可以查詢鎖定表中的記錄,但更新或訪問其他表都會提示錯誤;同時,另外一個session可以查詢表中的記錄,但更新就會出現(xiàn)鎖等待。
當使用LOCK TABLES時,不僅需要一次鎖定用到的所有表,而且,同一個表在SQL語句中出現(xiàn)多少次,就要通過與SQL語句中相同的別名鎖定多少次,否則也會出錯!
舉例說明如下。
(1)對actor表獲得讀鎖:
mysql> lock table actor read;
Query OK, 0 rows affected (0.00 sec)
(2)但是通過別名訪問會提示錯誤:
mysql> select a.first_name,a.last_name,b.first_name,b.last_name from actor a,actor b where a.first_name = b.first_name and a.first_name = 'Lisa' and a.last_name = 'Tom' and a.last_name <> b.last_name;
ERROR 1100 (HY000): Table 'a' was not locked with LOCK TABLES
(3)需要對別名分別鎖定:
mysql> lock table actor as a read,actor as b read;
Query OK, 0 rows affected (0.00 sec)
(4)按照別名的查詢可以正確執(zhí)行:
mysql> select a.first_name,a.last_name,b.first_name,b.last_name from actor a,actor b where a.first_name = b.first_name and a.first_name = 'Lisa' and a.last_name = 'Tom' and a.last_name <> b.last_name;
| first_name | last_name | first_name | last_name |
| Lisa | Tom | LISA | MONROE |
1 row in set (0.00 sec)
并發(fā)插入(Concurrent Inserts)
上文提到過MyISAM表的讀和寫是串行的,但這是就總體而言的。在一定條件下,MyISAM表也支持查詢和插入操作的并發(fā)進行。
MyISAM存儲引擎有一個系統(tǒng)變量concurrent_insert,專門用以控制其并發(fā)插入的行為,其值分別可以為0、1或2。
當concurrent_insert設置為0時,不允許并發(fā)插入。
當concurrent_insert設置為1時,如果MyISAM表中沒有空洞(即表的中間沒有被刪除的行),MyISAM允許在一個進程讀表的同時,另一個進程從表尾插入記錄。這也是MySQL的默認設置。
當concurrent_insert設置為2時,無論MyISAM表中有沒有空洞,都允許在表尾并發(fā)插入記錄。
可以利用MyISAM存儲引擎的并發(fā)插入特性,來解決應用中對同一表查詢和插入的鎖爭用。例如,將concurrent_insert系統(tǒng)變量設為2,總是允許并發(fā)插入;同時,通過定期在系統(tǒng)空閑時段執(zhí)行 OPTIMIZE TABLE語句來整理空間碎片,收回因刪除記錄而產生的中間空洞。有關OPTIMIZE TABLE語句的詳細介紹,可以參見第18章中“兩個簡單實用的優(yōu)化方法”一節(jié)的內容。
MyISAM的鎖調度
前面講過,MyISAM存儲引擎的讀鎖和寫鎖是互斥的,讀寫操作是串行的。那么,一個進程請求某個 MyISAM表的讀鎖,同時另一個進程也請求同一表的寫鎖,MySQL如何處理呢?答案是寫進程先獲得鎖。不僅如此,即使讀請求先到鎖等待隊列,寫請求后到,寫鎖也會插到讀鎖請求之前!這是因為MySQL認為寫請求一般比讀請求要重要。這也正是MyISAM表不太適合于有大量更新操作和查詢操作應用的原因,因為,大量的更新操作會造成查詢操作很難獲得讀鎖,從而可能永遠阻塞。這種情況有時可能會變得非常糟糕!幸好我們可以通過一些設置來調節(jié)MyISAM 的調度行為。
通過指定啟動參數low-priority-updates,使MyISAM引擎默認給予讀請求以優(yōu)先的權利。
通過執(zhí)行命令SET LOW_PRIORITY_UPDATES=1,使該連接發(fā)出的更新請求優(yōu)先級降低。
通過指定INSERT、UPDATE、DELETE語句的LOW_PRIORITY屬性,降低該語句的優(yōu)先級。
雖然上面3種方法都是要么更新優(yōu)先,要么查詢優(yōu)先的方法,但還是可以用其來解決查詢相對重要的應用(如用戶登錄系統(tǒng))中,讀鎖等待嚴重的問題。
另外,MySQL也提供了一種折中的辦法來調節(jié)讀寫沖突,即給系統(tǒng)參數max_write_lock_count設置一個合適的值,當一個表的讀鎖達到這個值后,MySQL就暫時將寫請求的優(yōu)先級降低,給讀進程一定獲得鎖的機會。
上面已經討論了寫優(yōu)先調度機制帶來的問題和解決辦法。這里還要強調一點:一些需要長時間運行的查詢操作,也會使寫進程“餓死”!因此,應用中應盡量避免出現(xiàn)長時間運行的查詢操作,不要總想用一條SELECT語句來解決問題,因為這種看似巧妙的SQL語句,往往比較復雜,執(zhí)行時間較長,在可能的情況下可以通過使用中間表等措施對SQL語句做一定的“分解”,使每一步查詢都能在較短時間完成,從而減少鎖沖突。如果復雜查詢不可避免,應盡量安排在數據庫空閑時段執(zhí)行,比如一些定期統(tǒng)計可以安排在夜間執(zhí)行。
InnoDB鎖
InnoDB與MyISAM的最大不同有兩點:一是支持事務(TRANSACTION);二是采用了行級鎖。行級鎖與表級鎖本來就有許多不同之處,另外,事務的引入也帶來了一些新問題。下面我們先介紹一點背景知識,然后詳細討論InnoDB的鎖問題。
1.事務(Transaction)及其ACID屬性
事務是由一組SQL語句組成的邏輯處理單元,事務具有以下4個屬性,通常簡稱為事務的ACID屬性。
(Atomicity)原子性:事務是一個原子操作單元,其對數據的修改,要么全都執(zhí)行,要么全都不執(zhí)行。
(Consistent)一致性:在事務開始和完成時,數據都必須保持一致狀態(tài)。這意味著所有相關的數據規(guī)則都必須應用于事務的修改,以保持數據的完整性;事務結束時,所有的內部數據結構(如B樹索引或雙向鏈表)也都必須是正確的。
(Isolation)隔離性:數據庫系統(tǒng)提供一定的隔離機制,保證事務在不受外部并發(fā)操作影響的“獨立”環(huán)境執(zhí)行。這意味著事務處理過程中的中間狀態(tài)對外部是不可見的,反之亦然。
(Durable)持久性:事務完成之后,它對于數據的修改是永久性的,即使出現(xiàn)系統(tǒng)故障也能夠保持。
銀行轉帳就是事務的一個典型例子。
2.并發(fā)事務處理帶來的問題
相對于串行處理來說,并發(fā)事務處理能大大增加數據庫資源的利用率,提高數據庫系統(tǒng)的事務吞吐量,從而可以支持